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Abstract
Schizophrenia is a severe and heterogeneous neuropsychiatric disorder character-
ised by complex symptoms, uncertain aetiology, and variable treatment outcomes. 
Traditional diagnostic methods relying on clinical observation and self-report often 
fail to capture the underlying biological diversity of the illness. Recent advances in 
machine learning (ML) have introduced powerful tools for analysing multimodal 
data and improving diagnostic precision, risk prediction, and treatment outcomes in 
schizophrenia. This comprehensive review summarises studies published between 
2010 and 2025 that applied ML methods to schizophrenia across diverse data modal-
ities, including neuroimaging, genomics, electronic health records, cognitive assess-
ments, and digital phenotyping. Evidence shows that ML models, particularly deep 
learning and multimodal fusion techniques, can effectively distinguish schizophrenia 
from other psychiatric conditions, identify individuals at ultra-high risk for psychosis, 
predict treatment response, and uncover biologically meaningful subtypes. Despite 
these advances, major challenges remain, including small and imbalanced datasets, 
limited generalisability, model opacity, and ethical concerns related to privacy and 
bias. Addressing these limitations through large-scale, diverse datasets, explainable 
AI, and ethical frameworks will be essential for clinical translation. Integrating ML 
into psychiatric decision-support systems may enable earlier diagnosis, personalised 
treatment, and better long-term outcomes. With continued development and respon-
sible implementation, ML holds the potential to transform schizophrenia care and 
advance the realisation of precision psychiatry.

ARTICLE INFO

*Correspondence:
Jamuna Das

jamunadas@soa.ac.in
Department of 

Psychiatry, Siksha’ 
O’ Anusandhan, IMS 

and SUM Hospital, 
Bhubaneshwar, India.

Dates:
Received: 20-10-2025
Accepted: 08-11-2025

Published: 20-12-2025

Keywords:
Machine learning, 

Schizophrenia, 
Neuroimaging, 

Genomics, Digital 
phenotyping, Predictive 

modelling.

How to Cite:
Das J, Biswal J, 

Choudhury AA. Machine 
Learning Applications 

in Schizophrenia: 
A Comprehensive 

Review. Indian Journal 
of Clinical Psychiatry. 

2025;5(2): 72-82.
doi: 10.54169/ijocp.v5i02.10

© IJOCP, 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-Sha-
reAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows users to download and share the article for 
non-commercial purposes, so long as the article is reproduced in the whole without changes, and the original 
authorship is acknowledged. If you remix, transform, or build upon the material, you must distribute your con-
tributions under the same license as the original. If your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

Schizophrenia is a chronic, severe, and heterogeneous mental disorder that 
profoundly affects thought, perception, emotion, and behaviour.[1] It remains 

one of the most disabling psychiatric conditions worldwide, with significant 
clinical, social, and economic implications. The disorder’s complex aetiology, 
encompassing genetic, neurodevelopmental, neurobiological, and environ-
mental factors, creates challenges in achieving early and accurate diagnosis, 
predicting disease trajectory, and optimising treatment [2]. Traditional psychi-
atric assessments, which rely on clinical interviews and observable symptoms, 
often lack the precision needed to detect subtle biological markers or forecast 
individual responses to treatment. [3] 
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Current psychiatric assessments rely heavily on 
clinical interviews and behavioural observations, 
which are often useful, and clinical judgement, but 
typically lack the precision required to capture subtle 
biological signatures or prognostic information for 
an individual. These complex and multifaceted 
diagnostic problems have prompted researchers 
and clinicians to seek to employ computational 
methods and machine learning (ML) methods and 
analytic systems in psychiatric research, diagnosis, 
and treatment. Machine learning, which is a branch 
of artificial intelligence, refers to algorithms that can 
find hidden structures within high-dimensional data 
and use them to make predictions or classifications 
without programming the algorithm explicitly.[4] 
In psychiatry, machine learning has been increas-
ingly utilised on multimodal data sources such 
as neuroimaging (structural and functional MRI, 
EEG), genomics, transcriptomics, electronic health 
records, and digital phenotyping data obtained 
from smartphones and wearables. Support vector 
machines (SVMs), random forests, logistic regres-
sion, ensemble learning, and deep learning archi-
tectures (e.g., convolutional neural networks and 
recurrent neural networks) have all demonstrated 
an ability to discriminate patients with schizophrenia 
from healthy controls, identify individuals at ultra-
high risk for developing a psychotic disorder, and 
forecast their trajectory of treatment response or 
relapse.[5-9]

In addition to classification, unsupervised 
methods such as clustering and dimensionality 
reduction (including principal component analysis, 
t-SNE, and autoencoders) have been used to iden-
tify subtypes within schizophrenia and schizophre-
nia-related syndromes, adding evidence to suggest 
that psychiatric disorders occur on a continuous 
distribution as opposed to discrete categories[10,11]. 
Finally, supervised methods have also used natural 
language processing (NLP) to analyse (early) clinical 
notes and transcripts of speech and interactions 
on social media data to identify linguistically based 
early indications of psychosis[12-14]. Despite the 
advances in ML, there are important limitations to 
utilisation within psychiatry; small sample sizes or 
imbalanced datasets, high risk of overfitting, diffi-
culty with complex and opaque inferences from the 

model, and limited generalizability are all important 
considerations with ML approaches in psychiatry. 
Furthermore, ethical considerations, including data 
privacy, algorithm-proof bias, and clinical account-
ability (i.e., clinical decisions based on ML), are points 
of consideration prior to implementation of ML into 
clinical practice[15-18].

ML refers to an assortment of algorithms that 
can identify underlying structures within high-di-
mensional data and make predictions or classify 
data without specific programming. In the field of 
psychiatry, ML has been employed increasingly with 
multimodal data sources, supporting analysis of 
complex data that may come from neuroimaging, 
genomics, clinical records, or digital phenotyping.
[5,19-21] In general, ML approaches can be classified 
into three groups: supervised learning methods (e.g., 
support vector machines (SVMs), logistic regression, 
and random forests), unsupervised methods (e.g., 
clustering, principal component analysis (PCA), and 
autoencoders), and deep learning techniques (e.g., 
convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and transformers). Ensem-
ble learning options (i.e., boosting and bagging) can 
help with prediction and improve performance by 
using multiple models.[22-32] A common workflow 
for all methods follows a similar pattern of data 
gathering, pre-processing, feature extraction, train-
ing and fine-tuning the model, and validating and 
evaluating the model. This framework is represented 
in most applications currently being conducted for 
psychiatric prediction.[15,33]

In recent years, advances in computational psy-
chiatry and artificial intelligence (AI) have introduced 
new opportunities for understanding and manag-
ing schizophrenia. Among these, machine learn-
ing (ML)—a subset of AI that enables algorithms 
to identify patterns and make predictions from 
high-dimensional data without explicit program-
ming—has shown substantial promise.[2,34,35] ML 
techniques have been applied across a range of 
data modalities, including neuroimaging, genomics, 
transcriptomics, electronic health records, cognitive 
assessments, and digital phenotyping from smart-
phones and wearable devices. These approaches 
have demonstrated the potential to differentiate 
patients with schizophrenia from healthy controls, 
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identify individuals at high risk for psychosis, predict 
treatment response, and uncover biologically distinct 
subtypes.[2]

Despite encouraging results, several method-
ological and ethical challenges limit the clinical 
translation of ML in schizophrenia. These include 
small and imbalanced datasets, variability in data 
acquisition, limited model interpretability, and 
concerns regarding privacy, bias, and accountabil-
ity. Addressing these challenges is critical for the 
responsible implementation of ML-driven tools in 
psychiatry. This review provides a comprehensive 
synthesis of current ML applications specifically 
in schizophrenia, summarising methodological 
advances, key findings, and ongoing challenges. It 
also highlights future directions aimed at developing 
interpretable, equitable, and clinically useful models 
that could transform schizophrenia care through 
precision psychiatry.

Methods
This review was conducted to summarise and criti-
cally evaluate current applications of ML in the pre-
diction, diagnosis, and treatment of schizophrenia. 
A comprehensive literature search was performed 
in PubMed, Scopus, and Google Scholar for studies 
published between January 2010 and September 
2025. The search terms included combinations of 
“machine learning,” “artificial intelligence,” “deep 
learning,” “neuroimaging,” “genomics,” “electronic 
health records,” “digital phenotyping,” and “schizo-
phrenia.”

Original research articles, systematic reviews, 
and meta-analyses focusing specifically on ML 
applications in schizophrenia were included. Studies 
exclusively addressing other psychiatric disorders 
were excluded unless they provided comparative 
insights relevant to schizophrenia. References of 
key publications were manually screened to identify 
additional eligible studies.

Extracted information included the ML technique 
used (e.g., support vector machines, random forests, 
convolutional neural networks), data modality (e.g., 
MRI, EEG, genetic, clinical, or behavioural data), study 
objectives, sample size, and key outcomes. Findings 
were organised thematically into major application 
areas—early risk identification, diagnostic classifi-

cation, treatment response prediction, and clinical 
decision-support integration.

The review was structured following a narrative 
synthesis approach, highlighting methodological 
trends, limitations, ethical considerations, and 
emerging directions toward precision psychiatry in 
schizophrenia.

Result

Machine Learning Applications in 
Schizophrenia
ML has been increasingly applied in schizophre-
nia research to improve prediction, diagnosis, 
and treatment personalisation. Across multiple 
data modalities, neuroimaging, genomics, clinical 
records, and digital phenotyping, ML methods have 
demonstrated promising performance in identifying 
biomarkers and forecasting clinical outcomes.

Machine learning has been increasingly applied 
across different stages of psychiatric care, from early 
risk identification to treatment optimisation. These 
applications highlight the potential of ML to bridge 
the gap between research and clinical practice, 
enabling more precise and personalised care. Below 
are the key domains where ML has shown substan-
tial promise.[36,37] One of the most critical applica-
tions of ML in psychiatry is the early identification 
of individuals at risk of developing schizophrenia or 
other psychotic disorders.[37,38]

Several studies have used ML algorithms such as 
support vector machines (SVMs), random forests, 
and deep learning networks to identify individuals 
at ultra-high risk (UHR) for psychosis. Models trained 
on structural and functional MRI data have predicted 
transition to schizophrenia with greater accuracy 
than traditional clinical assessments.[39]

Natural language processing (NLP) applied 
to speech and text data has detected early signs 
of thought disorder years before onset. Similarly, 
smartphone-based monitoring and digital pheno-
typing have revealed behavioural and social activity 
patterns indicative of early psychosis risk. Digital 
phenotyping: Smartphone-based monitoring of 
activity, mobility, and communication patterns has 
been used to identify behavioural shifts signalling 
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early psychiatric deterioration.[40] By identifying 
at-risk individuals earlier, ML can support preventive 
interventions and reduce the duration of untreated 
psychosis, which is strongly linked to better long-
term outcomes.

ML methods have also been applied to improve 
the accuracy of psychiatric diagnosis, which tra-
ditionally relies on subjective clinical evaluation. 
Subtyping within schizophrenia: Clustering and 
dimensionality reduction approaches have uncov-
ered biologically distinct subgroups, such as 
patients with predominant cognitive impairment 
versus those with affective symptoms. Multimodal 
classification: Combining imaging, genomic, and 
clinical data has yielded robust classifiers capable 
of outperforming single-modality approaches.[41,42]

Improved classification supports the movement 
toward data-driven diagnostic frameworks and 
may inform future revisions of psychiatric nosology 
beyond the DSM/ICD categories.[43]

Predicting treatment outcomes remains one 
of the most challenging areas in psychiatry, where 
trial-and-error prescribing is common. ML has been 
applied to: Medication response: Models trained on 
clinical and genomic data have predicted which 
patients are likely to respond to specific antipsy-
chotic medications (e.g., risperidone, clozapine), 
paving the way for personalised pharmacotherapy.
[44–46]

Algorithms using genetic and metabolic profiles 
have estimated the risk of adverse effects, such as 
weight gain or extrapyramidal symptoms.[47]

Prognosis and relapse prediction: Longitudinal 
ML models leveraging EHRs, wearable sensor data, 
and social behaviour features have forecasted 
relapse events, hospital readmissions, and long-term 
functional outcomes.[48] These predictive tools can 
help clinicians personalise treatment plans, reduce 
unnecessary medication trials, and anticipate 
relapses before they occur. Beyond prediction, ML 
has contributed to understanding the biological 
mechanisms underlying schizophrenia and related 
disorders.[49]

Graph-theory-based ML approaches have 
revealed disrupted brain networks and altered 
connectivity hubs in schizophrenia, pointing toward 
dysconnectivity as a central feature of the disorder.

[50,51] ML models applied to polygenic risk scores 
and gene expression data have identified path-
ways involved in synaptic signalling, immune func-
tion, and neurodevelopment as key contributors. 
Endophenotype discovery by clustering patients on 
the basis of cognitive, imaging, and genetic data, ML 
has uncovered intermediate phenotypes that may 
better explain heterogeneity in clinical presentation.
[52,53]

These insights contribute to the shift from a 
purely symptom-based understanding of schizo-
phrenia to a mechanistic, biology-informed per-
spective, which is essential for developing targeted 
therapies.[54]

Increasingly, ML applications are being inte-
grated into comprehensive clinical decision-support 
systems (CDSS). These systems combine risk predic-
tion, diagnostic classification, treatment response 
forecasting, and relapse monitoring into unified 
platforms. While still in early stages, pilot studies 
suggest that such systems may significantly aid 
psychiatrists in tailoring interventions, improving 
efficiency, and enhancing patient engagement.[55]

The effectiveness of machine learning to foresee 
and to classify schizophrenia and other mental dis-
orders, to a great extent, relies upon the nature and 
the quality of the input data. Every modality provides 
one-of-a-kind clues, and nowadays a combination 
of modalities is being used not only for greater 
accuracy but also for wider understanding. [56-58]

Neuroimaging is still considered to be the most 
preferred data source in Machine Learning (ML) 
applications in psychiatry.[17,19] Some of the tech-
niques used for this purpose are structural magnetic 
resonance imaging (sMRI), functional MRI (fMRI), 
diffusion tensor imaging (DTI), and electroenceph-
alography (EEG), which provide biomarkers of brain 
structure, connectivity, and activity.[59-65] Through 
sMRI, several changes have been reported, such as 
cortical thinning, reduction of gray matter, and volu-
metric abnormalities associated with schizophrenia.
[66,67] ML models like support vector machines 
(SVMs) and random forests have been utilised to 
perform the classification of patients vs. healthy 
controls by using these structural features as a 
basis. fMRI measures resting-state and task-related 
functional connectivity patterns. Therefore, models 
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such as convolutional neural networks (CNNs) and 
graph-based learning methods can support the 
identification of disrupted brain networks that are 
potentially linked to psychosis. DTI has been uti-
lised to examine white matter integrity, while ML 
algorithms have pointed out the microstructural 
changes in tracts like the corpus callosum. EEG/
MEG offers high temporal resolution, and the use 
of recurrent neural networks (RNNs) and temporal 
pattern recognition techniques has made it possible 
to identify abnormal oscillatory activity that predicts 
the occurrence of schizophrenia.[66-70]

Genomic data provide another powerful per-
spective, shedding light on the heritability and 
biological roots of psychiatric disorders. Genome-
wide association studies (GWAS)[71] have identified 
numerous single-nucleotide polymorphisms (SNPs) 
associated with schizophrenia risk. ML approaches 
such as regularised regression models (LASSO, 
elastic net) and ensemble methods have been used 
to construct polygenic risk scores that improve risk 
prediction. Transcriptomic and epigenetic data have 
also been analysed with deep learning models like 
autoencoders, uncovering genetic signatures tied 
to psychiatric outcomes. Integrating genomic data 
with imaging and clinical features is an emerging 
and promising direction.[72–76]

Electronic health records (EHRs) offer rich, lon-
gitudinal clinical information, including diagnoses, 
treatments, and hospital admissions. Natural lan-
guage processing has been applied to unstructured 
notes, allowing the early identification of psychosis 
risk factors. ML models trained on EHR data have 
also shown promise in predicting hospital read-
missions, treatment adherence, and relapse risk.
[74,77–79]

Behavioural and cognitive assessments, such 
as psychometric tests and structured interviews, 
further support classification tasks. ML models built 
on these inputs have successfully distinguished 
schizophrenia disorders.[80]

Digital phenotyping, enabled by smartphones 
and wearable devices, has emerged as a novel and 
rapidly growing data source. Passive measures like 
GPS tracking, call/text activity, and screen time 
can reveal patterns of social withdrawal, cognitive 
impairment, or circadian rhythm disruptions, which 

are common in schizophrenia.[81] Additionally, 
speech and language analysis through NLP and 
acoustic methods has proven effective in detect-
ing early markers of thought disorder and predict-
ing psychosis onset. Social media data, including 
posting behaviour and language use, have also been 
studied, though concerns about privacy remain 
significant.[82]

Because schizophrenia is highly heterogeneous, 
relying on a single data source often proves insuf-
ficient.[81,83] Recent research highlights the ben-
efits of multimodal approaches, which combine 
neuroimaging, genomic, clinical, and digital data. 
Methods such as multimodal deep learning, feature 
fusion, and ensemble modelling consistently out-
perform single-modality approaches. For example, 
combining fMRI connectivity data with genomic 
risk scores has improved classification accuracy, 
while integrating EHR and digital phenotyping has 
enhanced relapse prediction.[81–86]

Discussion
While machine learning has shown significant 
promise in predicting schizophrenia, several meth-
odological and practical challenges limit its clinical 
translation. These challenges span issues related to 
data, model development, interpretability, reproduc-
ibility, and real-world deployment.[87]

Many datasets have skewed class distributions 
(e.g., far fewer individuals who transition from high-
risk to schizophrenia compared to those who do 
not). Imbalanced data can bias models toward the 
majority class, leading to poor sensitivity for clinically 
critical outcomes like relapse or psychosis onset.[88]

Schizophrenia is inherently heterogeneous, and 
data collection protocols vary widely across studies, 
scanners, and clinical settings. Lack of standard-
isation complicates model training and reduces 
generalizability across populations. Missing data, 
noise in electronic health records, motion artefacts 
in neuroimaging, and incomplete genomic datasets 
are common. ML models trained on noisy data risk 
producing unreliable outputs.[88,89]

Overly complex models (e.g., deep neural net-
works with many parameters) may fit the idiosyncra-
sies of a training dataset rather than true underlying 
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patterns. Without rigorous external validation, such 
models often fail when applied to new populations.
[90]

Unlike in computer vision or natural language 
processing, psychiatry lacks large benchmark 
datasets and standardised evaluation frameworks. 
This makes it difficult to compare models across 
studies and slows scientific progress. Many studies 
report high accuracy on internal datasets but fail to 
replicate results in independent cohorts. Variabil-
ity in pre-processing pipelines, feature extraction 
methods, and performance metrics contributes to 
this problem. Deep learning models often achieve 
high accuracy but provide little insight into how 
predictions are made. In psychiatry, where clinical 
decisions can have profound consequences, the lack 
of transparency is a major barrier to adoption.[91,92]

Many ML studies in psychiatry are based on data 
from Western, educated, industrialised, rich, and 
democratic (WEIRD) populations. Models trained in 
such contexts may not generalise to diverse cultural 
or socioeconomic settings, raising concerns about 
bias and inequity. Variability in scanner hardware, 
imaging protocols, and clinical diagnostic practices 
introduces systematic differences that can degrade 
model performance when applied across sites.
[91,93,94]

Psychiatric data is highly sensitive. ML applica-
tions relying on digital phenotyping, EHRs, or social 
media raise concerns about privacy breaches and 
informed consent. Biased training data can lead to 
unfair predictions, for instance, overdiagnosing or 
underdiagnosing certain demographic groups. This 
exacerbates existing disparities in mental health 
care. Determining responsibility for decisions made 
with ML support remains unclear, whether the clini-
cian, institution, or algorithm developer should be 
accountable for adverse outcomes. Few ML-based 
psychiatric tools have passed through rigorous reg-
ulatory approval processes (e.g., FDA, EMA), limiting 
their availability in clinical practice.[49,88,90–92,95]

Ethical, Legal, and Social 
Considerations
The integration of machine learning into psychiatry 
introduces not only technical and methodological 
challenges but also a range of ethical, legal, and 

social issues. Because psychiatric data is deeply 
personal and stigmatised, these challenges must be 
carefully addressed to ensure that the benefits of ML 
are realised without compromising patient rights, 
equity, or trust in mental health systems.[49,93,95]

Unlike many other medical domains, psychiatric 
data often contains subjective accounts of thoughts, 
emotions, and behaviours, which are particularly vul-
nerable to misuse. For example, digital phenotyping 
through smartphone monitoring captures intimate 
behavioural patterns such as sleep cycles, mobility, 
and social interactions.[52,93]

Storing and processing psychiatric data, espe-
cially when linked across modalities (EHRs, neuro-
imaging, genomics, and digital behaviour), raises 
the risk of breaches that could expose sensitive 
information. Strong encryption, federated learning 
(where data never leaves the local institution), and 
anonymisation are necessary to ensure secure han-
dling of psychiatric data.[92,93]

Many ML applications rely on continuous data 
collection from smartphones or wearables. Patients 
may not fully understand the scope of data being 
collected or how it will be used. Continuous digital 
tracking raises questions about whether patients 
truly have the option to opt out without feeling 
coerced, particularly in clinical or institutional set-
tings. Emerging frameworks propose allowing 
patients to update or withdraw consent in real time, 
thereby preserving autonomy and trust.[55,88,95]

Model Interpretability and Clinical 
Trust
Deep learning models, though powerful, often 
function as “black boxes,” offering little explanation 
for their predictions. Clinicians require interpretable 
models that highlight key features—such as specific 
brain regions or genetic markers—to build confi-
dence in their use. Techniques like SHAP values, 
attention mechanisms, and explainable AI are 
being explored but remain underused in psychiatric 
research.[96]

When ML models are used to inform diagnosis or 
treatment, questions arise about who is accountable 
for errors: the clinician, the healthcare institution, 
or the algorithm developers. Most argue that ML 
should be a decision-support tool rather than an 
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autonomous decision-maker in psychiatry. However, 
even in supportive roles, reliance on ML outputs 
could shift responsibility in ambiguous ways.[96,97]

Regulatory agencies such as the U.S. Food and 
Drug Administration (FDA) and European Medicines 
Agency (EMA) have begun developing frameworks 
for AI/ML in healthcare. However, few psychiatric 
applications have yet undergone formal regulatory 
approval.[98]

Predictive tools that label individuals as “high 
risk” for schizophrenia could unintentionally increase 
stigma or discrimination in employment, insur-
ance, and education. Access to ML-driven tools 
(e.g., mobile health apps, wearable sensors) may 
be limited in low-resource settings, potentially wid-
ening existing inequities in mental health care.[97]

Transparency, interpretability, and clear commu-
nication of model limitations are essential to build 
trust among patients, clinicians, and the public. 
Without trust, adoption of ML in psychiatry will 
remain limited.[98]

Future Directions and 
Opportunities
Progress in large-scale, multi-site collaborations 
such as ENIGMA and PsychENCODE will support the 
development of more representative datasets. Inte-
grating multimodal data—neuroimaging, genetics, 
EHR, and digital behaviour—using advanced fusion 
models may enhance accuracy and reveal new 
schizophrenia subtypes. The next generation of ML 
research must prioritise fairness-aware algorithms, 
explainability, and transparency to facilitate regula-
tory approval and clinician adoption. Embedding ML 
tools within clinical decision-support systems could 
help realise the promise of precision psychiatry, 
offering earlier diagnosis, individualised treatment, 
and improved patient outcomes.

Conclusion
Schizophrenia remains one of the most complex 
and disabling psychiatric disorders, with chal-
lenges in early detection, diagnosis, and treatment 
prediction. Machine learning (ML) has emerged as 
a transformative approach capable of analysing 

high-dimensional, multimodal data to reveal hidden 
biological and behavioural patterns underlying the 
illness. Evidence from neuroimaging, genomic, and 
digital phenotyping studies demonstrates that ML 
can enhance diagnostic precision, predict treat-
ment outcomes, and support the development of 
personalised interventions. However, the field still 
faces critical barriers, including small and hetero-
geneous datasets, limited model interpretability, 
and ethical concerns related to privacy and bias. 
Future research must prioritise large, diverse, and 
longitudinal datasets alongside explainable and 
ethically responsible AI frameworks. With continued 
innovation and clinical integration, ML holds signif-
icant promise for advancing precision psychiatry 
and improving long-term outcomes for individuals 
with schizophrenia.

References
1.	 Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: 

Overview and Treatment Options. Pharmacy and Ther-
apeutics 2014;39:638.

2.	 Luvsannyam E, Jain MS, Pormento MKL, Siddiqui 
H, Balagtas ARA, Emuze BO, et al. Neurobiology of 
Schizophrenia: A Comprehensive Review. Cureus 
2022;14:e23959. https://doi.org/10.7759/CUREUS.23959.

3.	 Insel TR, Cuthbert BN. Brain disorders? Precisely: Pre-
cision medicine comes to psychiatry. Science (1979) 
2015;348:499–500. https://doi.org/10.1126/SCIENCE.
AAB2358.

4.	 Chen ZS, Kulkarni P (Param), Galatzer-Levy IR, Bigio B, 
Nasca C, Zhang Y. Modern views of machine learning 
for precision psychiatry. Patterns 2022;3:100602. https://
doi.org/10.1016/J.PATTER.2022.100602.

5.	 Reynolds T, Johnson EC, Huggett SB, Bubier JA, Palmer 
RHC, Agrawal A, et al. Interpretation of psychiatric 
genome-wide association studies with multispecies 
heterogeneous functional genomic data integration. 
Neuropsychopharmacology 2021;46:86–97. https://doi.
org/10.1038/S41386-020-00795-5.

6.	 Lydon-Staley DM, Cornblath EJ, Blevins AS, Bassett DS. 
Modeling brain, symptom, and behavior in the winds 
of change. Neuropsychopharmacology 2021;46:20–32. 
https://doi.org/10.1038/S41386-020-00805-6.

7.	 von Ziegler L, Sturman O, Bohacek J. Big behavior: chal-
lenges and opportunities in a new era of deep behavior 
profiling. Neuropsychopharmacology 2021;46:33–44. 
https://doi.org/10.1038/S41386-020-0751-7.

8.	 Onnela JP. Opportunities and challenges in the col-
lection and analysis of digital phenotyping data. 
Neuropsychopharmacology 2021;46:45–54. https://doi.
org/10.1038/S41386-020-0771-3.

https://ijocp.com/index.php/IJOCP


 My Research Journals	 79	 Volume 5 | Issue 2 | 2025

Machine Learning Applications in Schizophrenia: A Comprehensive Review

9.	 Ressler KJ, Williams LM. Big data in psychiatry: multiom-
ics, neuroimaging, computational modeling, and digital 
phenotyping. Neuropsychopharmacology 2020;46:1. 
https://doi.org/10.1038/S41386-020-00862-X.

10.	 Feczko E, Miranda-Dominguez O, Marr M, Graham AM, 
Nigg JT, Fair DA. The Heterogeneity problem: Approaches 
to identify psychiatric subtypes. Trends Cogn Sci 
2019;23:584. https://doi.org/10.1016/J.TICS.2019.03.009.

11.	 Gao CX, Dwyer D, Zhu Y, Smith CL, Du L, Filia KM, et 
al. An overview of clustering methods with guidelines 
for application in mental health research. Psychiatry 
Res 2023;327:115265. https://doi.org/10.1016/J.PSY-
CHRES.2023.115265.

12.	 Narendra Kumar Rao B, Hemanth Raga Sai P, Naseeba 
B, Venkata Phani Karthik B, Madhavi G. Multilingual 
Text Identification Using NLP and Machine Learning 
2024:29–36. https://doi.org/10.1007/978-981-99-2832-
3_5.

13.	 Mangla P, Singh G, Pathak N, Chawla S. Language Iden-
tification Using Multinomial Naive Bayes Technique. 
Lecture Notes in Networks and Systems 2024;786:307–
16. https://doi.org/10.1007/978-981-99-6547-2_24.

14.	 Thu YK, Aung T, Supnithi T. Neural Sequence Labeling 
Based Sentence Segmentation for Myanmar Language. 
Lecture Notes in Networks and Systems 2023;734 
LNNS:285–96. https://doi.org/10.1007/978-3-031-36886-
8_24.

15.	 Jordan MI, Mitchell TM. Machine learning: Trends, per-
spectives, and prospects. Science (1979) 2015;349:255–
60. https://doi.org/10.1126/SCIENCE.AAA8415.

16.	 Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dan-
nlowski U, Walter H, et al. Translational machine 
learning for psychiatric neuroimaging. Prog Neuropsy-
chopharmacol Biol Psychiatry 2019;91:113–21. https://doi.
org/10.1016/J.PNPBP.2018.09.014.

17.	 Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based 
Individualized Prediction of Cognition and Behavior for 
Mental Disorders and Health: Methods and Promises. 
Biol Psychiatry 2020;88:818–28. https://doi.org/10.1016/J.
BIOPSYCH.2020.02.016.

18.	 Eyre HA, Singh AB, Reynolds C. Tech giants enter 
mental health. World Psychiatry 2016;15:21–2. https://
doi.org/10.1002/WPS.20297.

19.	 Rutherford S. The Promise of Machine Learning for 
Psychiatry. Biol Psychiatry 2020;88:e53–5. https://doi.
org/10.1016/J.BIOPSYCH.2020.08.024.

20.	 Chen ZS, Kulkarni P (Param), Galatzer-Levy IR, Bigio B, 
Nasca C, Zhang Y. Modern views of machine learning 
for precision psychiatry. Patterns 2022;3:100602. https://
doi.org/10.1016/J.PATTER.2022.100602.

21.	 Li G, Han D, Wang C, Hu W, Calhoun VD, Wang YP. 
Application of deep canonically correlated sparse 
autoencoder for the classification of schizophrenia. 
Comput Methods Programs Biomed 2020;183. https://
doi.org/10.1016/J.CMPB.2019.105073.

22.	 Aslan MF, Unlersen MF, Sabanci K, Durdu A. CNN-based 

transfer learning–BiLSTM network: A novel approach 
for COVID-19 infection detection. Appl Soft Comput 
2021;98. https://doi.org/10.1016/J.ASOC.2020.106912.

23.	 Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang 
Y. A survey on deep learning-based non-invasive brain 
signals: recent advances and new frontiers. J Neural 
Eng 2021;18. https://doi.org/10.1088/1741-2552/abc902.

24.	 Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K. Deep 
Learning Approach Combining Sparse Autoen-
coder with SVM for Network Intrusion Detection. 
IEEE Access 2018;6:52843–56. https://doi.org/10.1109/
ACCESS.2018.2869577.

25.	 Zhang X, Yao L, Huang C, Wang S, Tan M, Long G, et al. 
Multi-modality sensor data classification with selec-
tive attention. IJCAI International Joint Conference on 
Artificial Intelligence 2018;2018-July:3111–7. https://doi.
org/10.24963/ijcai.2018/432.

26.	 Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, 
Bougares F, Schwenk H, et al. Learning phrase repre-
sentations using RNN encoder-decoder for statistical 
machine translation. EMNLP 2014 - 2014 Conference 
on Empirical Methods in Natural Language Processing, 
Proceedings of the Conference 2014:1724–34. https://doi.
org/10.3115/v1/d14-1179.

27.	 Minaee S, Azimi E, Abdolrashidi A. Deep-Sentiment: 
Sentiment Analysis Using Ensemble of CNN and 
Bi-LSTM Models 2019.

28.	 Shankar D, Narumanchi S, Ananya HA, Kompalli P, 
Chaudhury K. Deep Learning based Large Scale Visual 
Recommendation and Search for E-Commerce 2017.

29.	 Kingma DP, Welling M. Auto-encoding variational bayes. 
2nd International Conference on Learning Representa-
tions, ICLR 2014 - Conference Track Proceedings 2014. 
https://doi.org/10.61603/ceas.v2i1.33.

30.	 Kingma DP, Welling M. An introduction to vari-
ational autoencoders. Foundations and Trends 
in Machine Learning 2019;12:307–92. https://doi.
org/10.1561/2200000056.

31.	 Sarker IH. Deep Learning: A Comprehensive Overview 
on Techniques, Taxonomy, Applications and Research 
Directions. SN Comput Sci 2021;2:420. https://doi.
org/10.1007/S42979-021-00815-1.

32.	 Pugliese R, Regondi S, Marini R. Machine learning-based 
approach: global trends, research directions, and reg-
ulatory standpoints. Data Science and Management 
2021;4:19–29. https://doi.org/10.1016/J.DSM.2021.12.002.

33.	 Sarker IH. Machine Learning: Algorithms, Real-World 
Applications and Research Directions. SN Comput Sci 
2021;2:160. https://doi.org/10.1007/S42979-021-00592-X.

34.	 Gashkarimov VR, Sultanova RI, Efremov IS, Asadullin A. 
Machine learning techniques in diagnostics and predic-
tion of the clinical features of schizophrenia: a narrative 
review. Consortium Psychiatricum 2023;4:43. https://doi.
org/10.17816/CP11030.

35.	 Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, et 
al. Sampling inequalities affect generalization of neu-

https://www.myresearchjournals.com/
https://www.myresearchjournals.com/


  Indian Journal of Clinical Psychiatry	 80	 Volume 5 | Issue 2 | 2025

Machine Learning Applications in Schizophrenia: A Comprehensive Review

roimaging-based diagnostic classifiers in psychiatry. 
BMC Med 2023;21:241. https://doi.org/10.1186/S12916-
023-02941-4.

36.	 Chen ZS, Kulkarni P (Param), Galatzer-Levy IR, Bigio B, 
Nasca C, Zhang Y. Modern views of machine learning 
for precision psychiatry. Patterns 2022;3:100602. https://
doi.org/10.1016/J.PATTER.2022.100602.

37.	 Ebrahimzadeh E, Saharkhiz S, Rajabion L, Oskouei HB, 
Seraji M, Fayaz F, et al. Simultaneous electroencepha-
lography-functional magnetic resonance imaging for 
assessment of human brain function. Front Syst Neuro-
sci 2022;16. https://doi.org/10.3389/FNSYS.2022.934266.

38.	 Bringas-Vega ML, Michel CM, Saxena S, White T, 
Valdes-Sosa PA. Neuroimaging and global health. 
Neuroimage 2022;260. https://doi.org/10.1016/J.NEURO-
IMAGE.2022.119458.

39.	 Morita T, Asada M, Naito E. Contribution of neuroimag-
ing studies to understanding development of human 
cognitive brain functions. Front Hum Neurosci 2016;10. 
https://doi.org/10.3389/FNHUM.2016.00464.

40.	 Yen C, Lin CL, Chiang MC. Exploring the Frontiers of Neu-
roimaging: A Review of Recent Advances in Understand-
ing Brain Functioning and Disorders. Life 2023;13:1472. 
https://doi.org/10.3390/LIFE13071472.

41.	 Sepede G, De Berardis D, Campanella D, Perrucci MG, 
Ferretti A, Salerno RM, et al. Neural correlates of negative 
emotion processing in bipolar disorder. Prog Neuropsy-
chopharmacol Biol Psychiatry 2015;60:1–10. https://doi.
org/10.1016/J.PNPBP.2015.01.016.

42.	 Yen C, Lin CL, Chiang MC. Exploring the Frontiers of Neu-
roimaging: A Review of Recent Advances in Understand-
ing Brain Functioning and Disorders. Life 2023;13:1472. 
https://doi.org/10.3390/LIFE13071472.

43.	 Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR. Deep 
convolutional neural network model for automated 
diagnosis of schizophrenia using EEG signals. Applied 
Sciences (Switzerland) 2019;9. https://doi.org/10.3390/
APP9142870.

44.	 Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss 
of cortical gray matter in schizophrenia: a meta-anal-
ysis and meta-regression of longitudinal MRI studies. 
Transl Psychiatry 2012;2:e190. https://doi.org/10.1038/
TP.2012.116.

45.	 Zhang Y, Catts VS, Sheedy D, McCrossin T, Kril JJ, 
Shannon Weickert C. Cortical grey matter volume 
reduction in people with schizophrenia is associated 
with neuro-inflammation. Transl Psychiatry 2016;6:e982. 
https://doi.org/10.1038/TP.2016.238.

46.	 Aksoy G, Cattan G, Chakraborty S, Karabatak M. 
Quantum Machine-Based Decision Support System 
for the Detection of Schizophrenia from EEG Records. 
J Med Syst 2024;48. https://doi.org/10.1007/s10916-024-
02048-0.

47.	 Zhao Z, Deng Y, Zhang Y, Zhang Y, Zhang X, Shao L. 
DeepFHR: Intelligent prediction of fetal Acidemia using 
fetal heart rate signals based on convolutional neural 

network. BMC Med Inform Decis Mak 2019;19. https://
doi.org/10.1186/s12911-019-1007-5.

48.	 Mortier S, Turkeš R, De Winne J, Van Ransbeeck W, 
Botteldooren D, Devos P, et al. Classification of Targets 
and Distractors in an Audiovisual Attention Task Based 
on Electroencephalography. Sensors 2023;23. https://
doi.org/10.3390/s23239588.

49.	 Bergen SE, Petryshen TL. Genome-wide association 
studies (GWAS) of schizophrenia: does bigger lead to 
better results? Curr Opin Psychiatry 2012;25:76. https://
doi.org/10.1097/YCO.0B013E32835035DD.

50.	 Bracher-Smith M, Rees E, Menzies G, Walters JTR, O’Don-
ovan MC, Owen MJ, et al. Machine learning for predic-
tion of schizophrenia using genetic and demographic 
factors in the UK biobank. Schizophr Res 2022;246:156. 
https://doi.org/10.1016/J.SCHRES.2022.06.006.

51.	 Coors A, Imtiaz MA, Boenniger MM, Aziz NA, Breteler 
MMB, Ettinger U. Polygenic risk scores for schizo-
phrenia are associated with oculomotor endopheno-
types. Psychol Med 2021;53:1611. https://doi.org/10.1017/
S0033291721003251.

52.	 Yang J, Benyamin B, McEvoy BP, Gordon S, Henders 
AK, Nyholt DR, et al. Common SNPs explain a large pro-
portion of the heritability for human height. Nat Genet 
2010;42:565–9. https://doi.org/10.1038/NG.608.

53.	 Zhao Z, Dorn S, Wu Y, Yang X, Jin J, Lu Q. One 
score to rule them all: regularized ensemble poly-
genic risk prediction with GWAS summary sta-
tistics. BioRxiv 2024:2024.11.27.625748. https://doi.
org/10.1101/2024.11.27.625748.

54.	 Fong WJ, Tan HM, Garg R, Teh AL, Pan H, Gupta V, et 
al. Comparing feature selection and machine learning 
approaches for predicting CYP2D6 methylation from 
genetic variation. Front Neuroinform 2023;17:1244336. 
https://doi.org/10.3389/FNINF.2023.1244336/FULL.

55.	 Swinckels L, Bennis FC, Ziesemer KA, Scheerman JFM, 
Bijwaard H, de Keijzer A, et al. The Use of Deep Learn-
ing and Machine Learning on Longitudinal Electronic 
Health Records for the Early Detection and Prevention 
of Diseases: Scoping Review. J Med Internet Res 2024;26. 
https://doi.org/10.2196/48320.

56.	 hua yining, Blackley S, Shinn A, Skinner J, Moran L, Zhou 
L. Identifying Psychosis Episodes in Psychiatric Admis-
sion Notes via Rule-based Methods, Machine Learning, 
and Pre-Trained Language Models. Res Sq 2024:rs.3.rs-
4126574. https://doi.org/10.21203/RS.3.RS-4126574/V1.

57.	 Garriga R, Buda TS, Guerreiro J, Omaña Iglesias J, Estella 
Aguerri I, Matić A. Combining clinical notes with struc-
tured electronic health records enhances the prediction 
of mental health crises. Cell Rep Med 2023;4:101260. 
https://doi.org/10.1016/J.XCRM.2023.101260.

58.	 Gashkarimov VR, Sultanova RI, Efremov IS, Asadullin A. 
Machine learning techniques in diagnostics and predic-
tion of the clinical features of schizophrenia: a narrative 
review. Consortium Psychiatricum 2023;4:43. https://doi.
org/10.17816/CP11030.

https://ijocp.com/index.php/IJOCP


 My Research Journals	 81	 Volume 5 | Issue 2 | 2025

Machine Learning Applications in Schizophrenia: A Comprehensive Review

59.	 Chivilgina O, Elger BS, Jotterand F. Digital Technologies 
for Schizophrenia Management: A Descriptive Review. 
Sci Eng Ethics 2021;27. https://doi.org/10.1007/S11948-
021-00302-Z.

60.	 Taipale H, Schneider-Thoma J, Pinzón-Espinosa J, Radua 
J, Efthimiou O, Vinkers CH, et al. Representation and 
Outcomes of Individuals with Schizophrenia Seen in 
Everyday Practice Who Are Ineligible for Randomized 
Clinical Trials. JAMA Psychiatry 2022;79:210–8. https://
doi.org/10.1001/JAMAPSYCHIATRY.2021.3990.

61.	 Birk RH, Samuel G. Digital Phenotyping for Mental 
Health: Reviewing the Challenges of Using Data to 
Monitor and Predict Mental Health Problems. Curr 
Psychiatry Rep 2022;24:523–8. https://doi.org/10.1007/
S11920-022-01358-9.

62.	 Chukka A, Choudhary S, Dutt S, Bondre A, Reddy P, 
Tugnawat D, et al. Digital Interventions for Relapse 
Prevention, Illness Self-Management, and Health 
Promotion In Schizophrenia: Recent Advances, Con-
tinued Challenges, and Future Opportunities. Curr 
Treat Options Psychiatry 2023;10:346–71. https://doi.
org/10.1007/S40501-023-00309-2.

63.	 Lane E, D’Arcey J, Kidd S, Onyeaka H, Alon N, Joshi D, et 
al. Digital Phenotyping in Adults with Schizophrenia: A 
Narrative Review. Curr Psychiatry Rep 2023;25:699–706. 
https://doi.org/10.1007/S11920-023-01467-Z/FIGURES/1.

64.	 Yan W, Zhao M, Fu Z, Pearlson GD, Sui J, Calhoun VD. 
Mapping relationships among schizophrenia, bipolar 
and schizoaffective disorders: A deep classification 
and clustering framework using fMRI time series. 
Schizophr Res 2021;245:141. https://doi.org/10.1016/J.
SCHRES.2021.02.007.

65.	 Ferrara M, Franchini G, Funaro M, Cutroni M, Valier B, 
Toffanin T, et al. Machine Learning and Non-Affective 
Psychosis: Identification, Differential Diagnosis, and 
Treatment. Curr Psychiatry Rep 2022;24:925. https://doi.
org/10.1007/S11920-022-01399-0.

66.	 Ostojic D, Lalousis PA, Donohoe G, Morris DW. The chal-
lenges of using machine learning models in psychiatric 
research and clinical practice. European Neuropsycho-
pharmacology 2024;88:53–65. https://doi.org/10.1016/J.
EURONEURO.2024.08.005.

67.	 Sun J, Lu T, Shao X, Han Y, Xia Y, Zheng Y, et al. Practical 
AI application in psychiatry: historical review and future 
directions. Mol Psychiatry 2025;30:4399. https://doi.
org/10.1038/S41380-025-03072-3.

68.	 Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwa-
bara H, et al. Machine-learning classification using 
neuroimaging data in schizophrenia, autism, ultra-
high risk and first-episode psychosis. Transl Psychiatry 
2020;10:1–11. https://doi.org/10.1038/S41398-020-00965-
5;TECHMETA.

69.	 Deneault A, Dumais A, Désilets M, Hudon A. Natural 
Language Processing and Schizophrenia: A Scoping 
Review of Uses and Challenges. J Pers Med 2024;14:744. 
https://doi.org/10.3390/JPM14070744/S1.

70.	 De Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese 
V, Segura-Garcia C, et al. Machine learning techniques in 
a structural and functional MRI diagnostic approach in 
schizophrenia: a systematic review. Neuropsychiatr Dis 
Treat 2019;15:1605. https://doi.org/10.2147/NDT.S202418.

71.	 Cao P, Li R, Li Y, Dong Y, Tang Y, Xu G, et al. Machine 
learning based differential diagnosis of schizophre-
nia, major depression disorder and bipolar disorder 
using structural magnetic resonance imaging. J 
Affect Disord 2025;383:20–31. https://doi.org/10.1016/J.
JAD.2025.04.135.

72.	 Stein DJ, Lund C, Nesse RM. Classification Systems in 
Psychiatry: Diagnosis and Global Mental Health in the Era 
of DSM-5 and ICD-11. Curr Opin Psychiatry 2013;26:493. 
https://doi.org/10.1097/YCO.0B013E3283642DFD.

73.	 Ciapparelli A, Dell’Osso L, Di Poggio AB, Carmassi C, 
Cecconi D, Fenzi M, et al. Clozapine in treatment-re-
sistant patients with schizophrenia, schizoaffective 
disorder, or psychotic bipolar disorder: A naturalistic 
48-month follow-up study. Journal of Clinical Psychiatry 
2003;64:451–8. https://doi.org/10.4088/JCP.v64n0416.

74.	 Fonseca de Freitas D, Kadra-Scalzo G, Agbedjro D, 
Francis E, Ridler I, Pritchard M, et al. Using a statisti-
cal learning approach to identify sociodemographic 
and clinical predictors of response to clozapine. J 
Psychopharmacol 2022;36:498 –506. https://doi.
org/10.1177/02698811221078746.

75.	 Del Fabro L, Bondi E, Serio F, Maggioni E, D’Agostino 
A, Brambilla P. Machine learning methods to predict 
outcomes of pharmacological treatment in psychosis. 
Transl Psychiatry 2023;13:75. https://doi.org/10.1038/
S41398-023-02371-Z.

76.	 De Hert M, Schreurs V, Vancampfort D, Van Winkel 
R. Metabolic syndrome in people with schizophre-
nia: a review. World Psychiatry 2009;8:15. https://doi.
org/10.1002/J.2051-5545.2009.TB00199.X.

77.	 Habehh H, Gohel S. Machine Learning in Healthcare. 
Curr Genomics 2021;22:291–300. https://doi.org/10.2174
/1389202922666210705124359.

78.	 Del Fabro L, Bondi E, Serio F, Maggioni E, D’Agostino 
A, Brambilla P. Machine learning methods to predict 
outcomes of pharmacological treatment in psychosis. 
Transl Psychiatry 2023;13:75. https://doi.org/10.1038/
S41398-023-02371-Z.

79.	 Wang X, Zhang Y, Wang PJ, Yan Q, Wang XX, Wu HS, 
et al. Altered Brain Network Dynamics in Schizophre-
nia Patients With Predominant Negative Symptoms: A 
Resting‐State fMRI Study Using Co‐Activation Pattern 
Analysis. Hum Brain Mapp 2025;46:e70369. https://doi.
org/10.1002/HBM.70369.

80.	 Ottet MC, Schaer M, Debbané M, Cammoun L, Thiran 
JP, Eliez S. Graph theory reveals dysconnected hubs in 
22q11DS and altered nodal efficiency in patients with 
hallucinations. Front Hum Neurosci 2013;7:402. https://
doi.org/10.3389/FNHUM.2013.00402.

81.	 Mena N, Ab M. Machine Learning techniques and 

https://www.myresearchjournals.com/
https://www.myresearchjournals.com/


  Indian Journal of Clinical Psychiatry	 82	 Volume 5 | Issue 2 | 2025

Machine Learning Applications in Schizophrenia: A Comprehensive Review

Polygenic Risk Score application to prediction genetic 
diseases. ADCAIJ: Advances in Distributed Computing 
and Artificial Intelligence Journal 2020;9:5–14. https://
doi.org/10.14201/ADCAIJ202091514.

82.	 Guerrin CGJ, Doorduin J, Sommer IE, de Vries EFJ. The 
dual hit hypothesis of schizophrenia: Evidence from 
animal models. Neurosci Biobehav Rev 2021;131:1150–68. 
https://doi.org/10.1016/J.NEUBIOREV.2021.10.025.

83.	 Lysaker PH, Pattison ML, Leonhardt BL, Phelps S, Vohs 
JL. Insight in schizophrenia spectrum disorders: rela-
tionship with behavior, mood and perceived quality of 
life, underlying causes and emerging treatments. World 
Psychiatry 2018;17:12. https://doi.org/10.1002/WPS.20508.

84.	 Zonayed M, Tasnim R, Jhara SS, Mimona MA, Hussein 
MR, Mobarak MH, et al. Machine learning and IoT in 
healthcare: Recent advancements, challenges & future 
direction. Adv Biomark Sci Technol 2025;7:335–64. 
https://doi.org/10.1016/J.ABST.2025.08.006.

85.	 Chen ZS, Kulkarni P (Param), Galatzer-Levy IR, Bigio B, 
Nasca C, Zhang Y. Modern views of machine learning 
for precision psychiatry. Patterns 2022;3:100602. https://
doi.org/10.1016/J.PATTER.2022.100602.

86.	 Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep 
learning for small and big data in psychiatry. Neuropsy-
chopharmacology 2020;46:176. https://doi.org/10.1038/
S41386-020-0767-Z.

87.	 Yasin S, Adeel M, Draz U, Ali T, Hijji M, Ayaz M, et al. A 
CNN-Transformer Fusion Model for Proactive Detection 
of Schizophrenia Relapse from EEG Signals. Bioengi-
neering 2025;12:641. https://doi.org/10.3390/BIOENGI-
NEERING12060641.

88.	 Li C, Chen J, Dong M, Yan H, Chen F, Mao N, et al. 
Classification of schizophrenia spectrum disorder 
using machine learning and functional connectivity: 
reconsidering the clinical application. BMC Psychiatry 
2025;25:372. https://doi.org/10.1186/S12888-025-06817-0.

89.	 Cortes-Briones JA, Tapia-Rivas NI, D’Souza DC, Estevez 
PA. Going deep into schizophrenia with artificial intel-
ligence. Schizophr Res 2022;245:122–40. https://doi.
org/10.1016/J.SCHRES.2021.05.018.

90.	 Khan W, Daud A, Khan K, Muhammad S, Haq R. Explor-
ing the frontiers of deep learning and natural language 
processing: A comprehensive overview of key chal-
lenges and emerging trends. Natural Language Pro-

cessing Journal 2023;4:100026. https://doi.org/10.1016/J.
NLP.2023.100026.

91.	 Abbas Q, Jeong W, Lee SW. Explainable AI in Clinical 
Decision Support Systems: A Meta-Analysis of Methods, 
Applications, and Usability Challenges. Health-
care 2025;13:2154. https://doi.org/10.3390/HEALTH-
CARE13172154.

92.	 Muthukrishna M, Bell A V., Henrich J, Curtin CM, 
Gedranovich A, McInerney J, et al. Beyond Western, 
Educated, Industrial, Rich, and Democratic (WEIRD) 
Psychology: Measuring and Mapping Scales of Cultural 
and Psychological Distance. Psychol Sci 2020;31:678–
701. https://doi.org/10.1177/0956797620916782.

93.	 Susanto AP, Lyell D, Widyantoro B, Berkovsky S, Magrabi 
F. Effects of machine learning-based clinical decision 
support systems on decision-making, care delivery, 
and patient outcomes: a scoping review. J Am Med 
Inform Assoc 2023;30:2050. https://doi.org/10.1093/
JAMIA/OCAD180.

94.	 Timmons AC, Duong JB, Simo Fiallo N, Lee T, Vo HPQ, 
Ahle MW, et al. A Call to Action on Assessing and Mitigat-
ing Bias in Artificial Intelligence Applications for Mental 
Health. Perspect Psychol Sci 2022;18:1062. https://doi.
org/10.1177/17456916221134490.

95.	 Nouis SCE, Uren V, Jariwala S. Evaluating accountabil-
ity, transparency, and bias in AI-assisted healthcare 
decision- making: a qualitative study of healthcare 
professionals’ perspectives in the UK. BMC Med Ethics 
2025;26:89. https://doi.org/10.1186/S12910-025-01243-Z.

96.	 Benjamens S, Dhunnoo P, Meskó B. The state of artifi-
cial intelligence-based FDA-approved medical devices 
and algorithms: an online database. NPJ Digit Med 
2020;3:118. https://doi.org/10.1038/S41746-020-00324-0.

97.	 Torous J, Linardon J, Goldberg SB, Sun S, Bell I, Nicholas 
J, et al. The evolving field of digital mental health: current 
evidence and implementation issues for smartphone 
apps, generative artificial intelligence, and virtual reality. 
World Psychiatry 2025;24:156. https://doi.org/10.1002/
WPS.21299.

98.	 Nouis SCE, Uren V, Jariwala S. Evaluating accountabil-
ity, transparency, and bias in AI-assisted healthcare 
decision- making: a qualitative study of healthcare 
professionals’ perspectives in the UK. BMC Med Ethics 
2025;26:89. https://doi.org/10.1186/S12910-025-01243-Z.

https://ijocp.com/index.php/IJOCP

	Abstract
	Introduction 

