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Abstract

Schizophrenia is a severe and heterogeneous neuropsychiatric disorder character-
ised by complex symptoms, uncertain aetiology, and variable treatment outcomes.
Traditional diagnostic methods relying on clinical observation and self-report often
fail to capture the underlying biological diversity of the illness. Recent advances in
machine learning (ML) have introduced powerful tools for analysing multimodal
data and improving diagnostic precision, risk prediction, and treatment outcomes in
schizophrenia. This comprehensive review summarises studies published between
2010 and 2025 that applied ML methods to schizophrenia across diverse data modal-
ities, including neuroimaging, genomics, electronic health records, cognitive assess-
ments, and digital phenotyping. Evidence shows that ML models, particularly deep
learning and multimodal fusion techniques, can effectively distinguish schizophrenia
from other psychiatric conditions, identify individuals at ultra-high risk for psychosis,
predict treatment response, and uncover biologically meaningful subtypes. Despite
these advances, major challenges remain, including small and imbalanced datasets,
limited generalisability, model opacity, and ethical concerns related to privacy and
bias. Addressing these limitations through large-scale, diverse datasets, explainable
Al, and ethical frameworks will be essential for clinical translation. Integrating ML
into psychiatric decision-support systems may enable earlier diagnosis, personalised
treatment, and better long-term outcomes. With continued development and respon-
sible implementation, ML holds the potential to transform schizophrenia care and

advance the realisation of precision psychiatry.
S J

INTRODUCTION

Schizophrenia is a chronic, severe, and heterogeneous mental disorder that
profoundly affects thought, perception, emotion, and behaviour.[1] It remains
one of the most disabling psychiatric conditions worldwide, with significant
clinical, social, and economic implications. The disorder's complex aetiology,
encompassing genetic, neurodevelopmental, neurobiological, and environ-
mental factors, creates challenges in achieving early and accurate diagnosis,
predicting disease trajectory, and optimising treatment [2]. Traditional psychi-
atric assessments, which rely on clinical interviews and observable symptoms,
often lack the precision needed to detect subtle biological markers or forecast
individual responses to treatment. [3]
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Current psychiatric assessments rely heavily on
clinical interviews and behavioural observations,
which are often useful, and clinical judgement, but
typically lack the precision required to capture subtle
biological signatures or prognostic information for
an individual. These complex and multifaceted
diagnostic problems have prompted researchers
and clinicians to seek to employ computational
methods and machine learning (ML) methods and
analytic systems in psychiatric research, diagnosis,
and treatment. Machine learning, which is a branch
of artificial intelligence, refers to algorithms that can
find hidden structures within high-dimensional data
and use them to make predictions or classifications
without programming the algorithm explicitly.[4]
In psychiatry, machine learning has been increas-
ingly utilised on multimodal data sources such
as neuroimaging (structural and functional MRI,
EEQ), genomics, transcriptomics, electronic health
records, and digital phenotyping data obtained
from smartphones and wearables. Support vector
machines (SVMs), random forests, logistic regres-
sion, ensemble learning, and deep learning archi-
tectures (e.g., convolutional neural networks and
recurrent neural networks) have all demonstrated
an ability to discriminate patients with schizophrenia
from healthy controls, identify individuals at ultra-
high risk for developing a psychotic disorder, and
forecast their trajectory of treatment response or
relapse.[5-9]

In addition to classification, unsupervised
methods such as clustering and dimensionality
reduction (including principal component analysis,
t-SNE, and autoencoders) have been used to iden-
tify subtypes within schizophrenia and schizophre-
nia-related syndromes, adding evidence to suggest
that psychiatric disorders occur on a continuous
distribution as opposed to discrete categories[10,11].
Finally, supervised methods have also used natural
language processing (NLP) to analyse (early) clinical
notes and transcripts of speech and interactions
on social media data to identify linguistically based
early indications of psychosis[12-14]. Despite the
advances in ML, there are important limitations to
utilisation within psychiatry; small sample sizes or
imbalanced datasets, high risk of overfitting, diffi-
culty with complex and opaque inferences from the

model, and limited generalizability are all important
considerations with ML approaches in psychiatry.
Furthermore, ethical considerations, including data
privacy, algorithm-proof bias, and clinical account-
ability (i.e., clinical decisions based on ML), are points
of consideration prior to implementation of ML into
clinical practice[15-18].

ML refers to an assortment of algorithms that
can identify underlying structures within high-di-
mensional data and make predictions or classify
data without specific programming. In the field of
psychiatry, ML has been employed increasingly with
multimodal data sources, supporting analysis of
complex data that may come from neuroimaging,
genomics, clinical records, or digital phenotyping.
[5,19-21] In general, ML approaches can be classified
into three groups: supervised learning methods (e.g.,
support vector machines (SVMs), logistic regression,
and random forests), unsupervised methods (e.g.,
clustering, principal component analysis (PCA), and
autoencoders), and deep learning techniques (e.g.,
convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and transformers). Ensem-
ble learning options (i.e., boosting and bagging) can
help with prediction and improve performance by
using multiple models.[22-32] A common workflow
for all methods follows a similar pattern of data
gathering, pre-processing, feature extraction, train-
ing and fine-tuning the model, and validating and
evaluating the model. This framework is represented
in most applications currently being conducted for
psychiatric prediction.[15,33]

In recent years, advances in computational psy-
chiatry and artificial intelligence (Al) have introduced
new opportunities for understanding and manag-
ing schizophrenia. Among these, machine learn-
ing (ML)—a subset of Al that enables algorithms
to identify patterns and make predictions from
high-dimensional data without explicit program-
ming—has shown substantial promise.[2,34,35] ML
techniques have been applied across a range of
data modalities, including neuroimaging, genomics,
transcriptomics, electronic health records, cognitive
assessments, and digital phenotyping from smart-
phones and wearable devices. These approaches
have demonstrated the potential to differentiate
patients with schizophrenia from healthy controls,
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identify individuals at high risk for psychosis, predict
treatment response, and uncover biologically distinct
subtypes.[2]

Despite encouraging results, several method-
ological and ethical challenges limit the clinical
translation of ML in schizophrenia. These include
small and imbalanced datasets, variability in data
acquisition, limited model interpretability, and
concerns regarding privacy, bias, and accountabil-
ity. Addressing these challenges is critical for the
responsible implementation of ML-driven tools in
psychiatry. This review provides a comprehensive
synthesis of current ML applications specifically
in schizophrenia, summarising methodological
advances, key findings, and ongoing challenges. It
also highlights future directions aimed at developing
interpretable, equitable, and clinically useful models
that could transform schizophrenia care through
precision psychiatry.

Methods

This review was conducted to summarise and criti-
cally evaluate current applications of ML in the pre-
diction, diagnosis, and treatment of schizophrenia.
A comprehensive literature search was performed
in PubMed, Scopus, and Google Scholar for studies
published between January 2010 and September
2025. The search terms included combinations of
“machine learning,” “artificial intelligence,” “deep
learning,” “neuroimaging,” “genomics,” “electronic
health records,” “digital phenotyping,” and “schizo-
phrenia.”

Original research articles, systematic reviews,
and meta-analyses focusing specifically on ML
applicationsin schizophrenia were included. Studies
exclusively addressing other psychiatric disorders
were excluded unless they provided comparative
insights relevant to schizophrenia. References of
key publications were manually screened to identify
additional eligible studies.

Extracted information included the ML technique
used (e.g., support vector machines, random forests,
convolutional neural networks), data modality (e.g.,
MRI, EEG, genetic, clinical, or behavioural data), study
objectives, sample size, and key outcomes. Findings
were organised thematically into major application
areas—early risk identification, diagnostic classifi-

cation, treatment response prediction, and clinical
decision-support integration.

The review was structured following a narrative
synthesis approach, highlighting methodological
trends, limitations, ethical considerations, and
emerging directions toward precision psychiatry in
schizophrenia.

RESULT

Machine Learning Applications in
Schizophrenia

ML has been increasingly applied in schizophre-
nia research to improve prediction, diagnosis,
and treatment personalisation. Across multiple
data modalities, neuroimaging, genomics, clinical
records, and digital phenotyping, ML methods have
demonstrated promising performance in identifying
biomarkers and forecasting clinical outcomes.

Machine learning has been increasingly applied
across different stages of psychiatric care, from early
risk identification to treatment optimisation. These
applications highlight the potential of ML to bridge
the gap between research and clinical practice,
enabling more precise and personalised care. Below
are the key domains where ML has shown substan-
tial promise.[36,37] One of the most critical applica-
tions of ML in psychiatry is the early identification
of individuals at risk of developing schizophrenia or
other psychotic disorders.[37,38]

Several studies have used ML algorithms such as
support vector machines (SVMs), random forests,
and deep learning networks to identify individuals
at ultra-high risk (UHR) for psychosis. Models trained
on structural and functional MRI data have predicted
transition to schizophrenia with greater accuracy
than traditional clinical assessments.[39]

Natural language processing (NLP) applied
to speech and text data has detected early signs
of thought disorder years before onset. Similarly,
smartphone-based monitoring and digital pheno-
typing have revealed behavioural and social activity
patterns indicative of early psychosis risk. Digital
phenotyping: Smartphone-based monitoring of
activity, mobility, and communication patterns has
been used to identify behavioural shifts signalling
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early psychiatric deterioration.[40] By identifying
at-risk individuals earlier, ML can support preventive
interventions and reduce the duration of untreated
psychosis, which is strongly linked to better long-
term outcomes.

ML methods have also been applied to improve
the accuracy of psychiatric diagnosis, which tra-
ditionally relies on subjective clinical evaluation.
Subtyping within schizophrenia: Clustering and
dimensionality reduction approaches have uncov-
ered biologically distinct subgroups, such as
patients with predominant cognitive impairment
versus those with affective symptoms. Multimodal
classification: Combining imaging, genomic, and
clinical data has yielded robust classifiers capable
of outperforming single-modality approaches.[41,42]

Improved classification supports the movement
toward data-driven diagnostic frameworks and
may inform future revisions of psychiatric nosology
beyond the DSM/ICD categories.[43]

Predicting treatment outcomes remains one
of the most challenging areas in psychiatry, where
trial-and-error prescribing iscommon. ML has been
applied to: Medication response: Models trained on
clinical and genomic data have predicted which
patients are likely to respond to specific antipsy-
chotic medications (e.g., risperidone, clozapine),
paving the way for personalised pharmacotherapy.
[44-46]

Algorithms using genetic and metabolic profiles
have estimated the risk of adverse effects, such as
weight gain or extrapyramidal symptoms.[47]

Prognosis and relapse prediction: Longitudinal
ML models leveraging EHRs, wearable sensor data,
and social behaviour features have forecasted
relapse events, hospital readmissions, and long-term
functional outcomes.[48] These predictive tools can
help clinicians personalise treatment plans, reduce
unnecessary medication trials, and anticipate
relapses before they occur. Beyond prediction, ML
has contributed to understanding the biological
mechanisms underlying schizophrenia and related
disorders.[49]

Graph-theory-based ML approaches have
revealed disrupted brain networks and altered
connectivity hubs in schizophrenia, pointing toward
dysconnectivity as a central feature of the disorder.

[50,51] ML models applied to polygenic risk scores
and gene expression data have identified path-
ways involved in synaptic signalling, immune func-
tion, and neurodevelopment as key contributors.
Endophenotype discovery by clustering patients on
the basis of cognitive, imaging, and genetic data, ML
has uncovered intermediate phenotypes that may
better explain heterogeneity in clinical presentation.
[52,53]

These insights contribute to the shift from a
purely symptom-based understanding of schizo-
phrenia to a mechanistic, biology-informed per-
spective, which is essential for developing targeted
therapies.[54]

Increasingly, ML applications are being inte-
grated into comprehensive clinical decision-support
systems (CDSS). These systems combine risk predic-
tion, diagnostic classification, treatment response
forecasting, and relapse monitoring into unified
platforms. While still in early stages, pilot studies
suggest that such systems may significantly aid
psychiatrists in tailoring interventions, improving
efficiency, and enhancing patient engagement.[55]

The effectiveness of machine learning to foresee
and to classify schizophrenia and other mental dis-
orders, to a great extent, relies upon the nature and
the quality of the input data. Every modality provides
one-of-a-kind clues, and nowadays a combination
of modalities is being used not only for greater
accuracy but also for wider understanding. [56-58]

Neuroimaging is still considered to be the most
preferred data source in Machine Learning (ML)
applications in psychiatry.[17,19] Some of the tech-
nigues used for this purpose are structural magnetic
resonance imaging (sMRI), functional MRI (fMRI),
diffusion tensor imaging (DTI), and electroenceph-
alography (EEG), which provide biomarkers of brain
structure, connectivity, and activity.[59-65] Through
sMRI, several changes have been reported, such as
cortical thinning, reduction of gray matter, and volu-
metric abnormalities associated with schizophrenia.
[66,67] ML models like support vector machines
(SVMs) and random forests have been utilised to
perform the classification of patients vs. healthy
controls by using these structural features as a
basis. fMRI measures resting-state and task-related
functional connectivity patterns. Therefore, models
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such as convolutional neural networks (CNNs) and
graph-based learning methods can support the
identification of disrupted brain networks that are
potentially linked to psychosis. DTl has been uti-
lised to examine white matter integrity, while ML
algorithms have pointed out the microstructural
changes in tracts like the corpus callosum. EEG/
MEG offers high temporal resolution, and the use
of recurrent neural networks (RNNs) and temporal
pattern recognition techniques has made it possible
to identify abnormal oscillatory activity that predicts
the occurrence of schizophrenia.[66-70]

Genomic data provide another powerful per-
spective, shedding light on the heritability and
biological roots of psychiatric disorders. Genome-
wide association studies (CGWAS)[71] have identified
numerous single-nucleotide polymorphisms (SNPs)
associated with schizophrenia risk. ML approaches
such as regularised regression models (LASSO,
elastic net) and ensemble methods have been used
to construct polygenic risk scores that improve risk
prediction. Transcriptomic and epigenetic data have
also been analysed with deep learning models like
autoencoders, uncovering genetic signatures tied
to psychiatric outcomes. Integrating genomic data
with imaging and clinical features is an emerging
and promising direction.[72-76]

Electronic health records (EHRs) offer rich, lon-
gitudinal clinical information, including diagnoses,
treatments, and hospital admissions. Natural lan-
guage processing has been applied to unstructured
notes, allowing the early identification of psychosis
risk factors. ML models trained on EHR data have
also shown promise in predicting hospital read-
missions, treatment adherence, and relapse risk.
[74,77-79]

Behavioural and cognitive assessments, such
as psychometric tests and structured interviews,
further support classification tasks. ML models built
on these inputs have successfully distinguished
schizophrenia disorders.[80]

Digital phenotyping, enabled by smartphones
and wearable devices, has emerged as a novel and
rapidly growing data source. Passive measures like
GPS tracking, call/text activity, and screen time
can reveal patterns of social withdrawal, cognitive
impairment, or circadian rhythm disruptions, which

are common in schizophrenia.[81] Additionally,
speech and language analysis through NLP and
acoustic methods has proven effective in detect-
ing early markers of thought disorder and predict-
ing psychosis onset. Social media data, including
posting behaviour and language use, have also been
studied, though concerns about privacy remain
significant.[82]

Because schizophrenia is highly heterogeneous,
relying on a single data source often proves insuf-
ficient.[81,83] Recent research highlights the ben-
efits of multimodal approaches, which combine
neuroimaging, genomic, clinical, and digital data.
Methods such as multimodal deep learning, feature
fusion, and ensemble modelling consistently out-
perform single-modality approaches. For example,
combining fMRI connectivity data with genomic
risk scores has improved classification accuracy,
while integrating EHR and digital phenotyping has
enhanced relapse prediction.[81-86]

DISCUSSION

While machine learning has shown significant
promise in predicting schizophrenia, several meth-
odological and practical challenges limit its clinical
translation. These challenges span issues related to
data, model development, interpretability, reproduc-
ibility, and real-world deployment.[87]

Many datasets have skewed class distributions
(e.g., far fewer individuals who transition from high-
risk to schizophrenia compared to those who do
not). Imbalanced data can bias models toward the
majority class, leading to poor sensitivity for clinically
critical outcomes like relapse or psychosis onset.[88]

Schizophrenia is inherently heterogeneous, and
data collection protocols vary widely across studies,
scanners, and clinical settings. Lack of standard-
isation complicates model training and reduces
generalizability across populations. Missing data,
noise in electronic health records, motion artefacts
in neuroimaging, and incomplete genomic datasets
are common. ML models trained on noisy data risk
producing unreliable outputs.[88,89]

Overly complex models (e.g., deep neural net-
works with many parameters) may fit the idiosyncra-
sies of a training dataset rather than true underlying
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patterns. Without rigorous external validation, such
models often fail when applied to new populations.
[90]

Unlike in computer vision or natural language
processing, psychiatry lacks large benchmark
datasets and standardised evaluation frameworks.
This makes it difficult to compare models across
studies and slows scientific progress. Many studies
report high accuracy on internal datasets but fail to
replicate results in independent cohorts. Variabil-
ity in pre-processing pipelines, feature extraction
methods, and performance metrics contributes to
this problem. Deep learning models often achieve
high accuracy but provide little insight into how
predictions are made. In psychiatry, where clinical
decisions can have profound consequences, the lack
of transparency is a major barrier to adoption.[91,92]

Many ML studies in psychiatry are based on data
from Western, educated, industrialised, rich, and
democratic (WEIRD) populations. Models trained in
such contexts may not generalise to diverse cultural
or socioeconomic settings, raising concerns about
bias and inequity. Variability in scanner hardware,
imaging protocols, and clinical diagnostic practices
introduces systematic differences that can degrade
model performance when applied across sites.
[91,93,94]

Psychiatric data is highly sensitive. ML applica-
tions relying on digital phenotyping, EHRs, or social
media raise concerns about privacy breaches and
informed consent. Biased training data can lead to
unfair predictions, for instance, overdiagnosing or
underdiagnosing certain demographic groups. This
exacerbates existing disparities in mental health
care. Determining responsibility for decisions made
with ML support remains unclear, whether the clini-
cian, institution, or algorithm developer should be
accountable for adverse outcomes. Few ML-based
psychiatric tools have passed through rigorous reg-
ulatory approval processes (e.g., FDA, EMA), limiting
their availability in clinical practice.[49,88,90-92,95]

Ethical, Legal, and Social
Considerations
The integration of machine learning into psychiatry

introduces not only technical and methodological
challenges but also a range of ethical, legal, and

social issues. Because psychiatric data is deeply
personal and stigmatised, these challenges must be
carefully addressed to ensure that the benefits of ML
are realised without compromising patient rights,
equity, or trust in mental health systems.[49,93,95]

Unlike many other medical domains, psychiatric
data often contains subjective accounts of thoughts,
emotions, and behaviours, which are particularly vul-
nerable to misuse. For example, digital phenotyping
through smartphone monitoring captures intimate
behavioural patterns such as sleep cycles, mobility,
and social interactions.[52,93]

Storing and processing psychiatric data, espe-
cially when linked across modalities (EHRs, neuro-
imaging, genomics, and digital behaviour), raises
the risk of breaches that could expose sensitive
information. Strong encryption, federated learning
(where data never leaves the local institution), and
anonymisation are necessary to ensure secure han-
dling of psychiatric data.[92,93]

Many ML applications rely on continuous data
collection from smartphones or wearables. Patients
may not fully understand the scope of data being
collected or how it will be used. Continuous digital
tracking raises questions about whether patients
truly have the option to opt out without feeling
coerced, particularly in clinical or institutional set-
tings. Emerging frameworks propose allowing
patients to update or withdraw consent in real time,
thereby preserving autonomy and trust.[55,88,95]

Model Interpretability and Clinical
Trust

Deep learning models, though powerful, often
function as “black boxes,” offering little explanation
for their predictions. Clinicians require interpretable
models that highlight key features—such as specific
brain regions or genetic markers—to build confi-
dence in their use. Techniques like SHAP values,
attention mechanisms, and explainable Al are
being explored but remain underused in psychiatric
research.[96]

When ML models are used to inform diagnosis or
treatment, questions arise about who is accountable
for errors: the clinician, the healthcare institution,
or the algorithm developers. Most argue that ML
should be a decision-support tool rather than an
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autonomous decision-maker in psychiatry. However,
even in supportive roles, reliance on ML outputs
could shift responsibility in ambiguous ways.[96,97]

Regulatory agencies such as the U.S. Food and
Drug Administration (FDA) and European Medicines
Agency (EMA) have begun developing frameworks
for AI/ML in healthcare. However, few psychiatric
applications have yet undergone formal regulatory
approval.[98]

Predictive tools that label individuals as “high
risk” for schizophrenia could unintentionally increase
stigma or discrimination in employment, insur-
ance, and education. Access to ML-driven tools
(e.g., mobile health apps, wearable sensors) may
be limited in low-resource settings, potentially wid-
ening existing inequities in mental health care.[97]

Transparency, interpretability, and clear commu-
nication of model limitations are essential to build
trust among patients, clinicians, and the public.
Without trust, adoption of ML in psychiatry will
remain limited.[98]

high-dimensional, multimodal data to reveal hidden
biological and behavioural patterns underlying the
illness. Evidence from neuroimaging, genomic, and
digital phenotyping studies demonstrates that ML
can enhance diagnostic precision, predict treat-
ment outcomes, and support the development of
personalised interventions. However, the field still
faces critical barriers, including small and hetero-
geneous datasets, limited model interpretability,
and ethical concerns related to privacy and bias.
Future research must prioritise large, diverse, and
longitudinal datasets alongside explainable and
ethically responsible Al frameworks. With continued
innovation and clinical integration, ML holds signif-
icant promise for advancing precision psychiatry
and improving long-term outcomes for individuals
with schizophrenia.
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